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The problem of stability of a cylindrical plasma filament contained by a 

magnetic field has been considered in the approximation of a perfectly 

conducting plasma in [I-T] and a number of other papers. The study of 

configurations with surface currents, reported in [l-2], was followed in 

certain cases by studies of distributed currents (on an incompressible 

cylinder model) 12-51. The criterion of stability relative to perturba- 

tions of local type was obtained by Suydam [61 on the basis of the energy 

principle. It was shown in [5] that the fulfilment of this criterion 

still did not guarantee stability with regard to all types of perturba- 

tion. Local perturbations were studied also by Rosenbluth [T] and others. 

The problem of stability with allowance for the finite conductivity 

of the medium is more complicated. The case of a poorly conducting 

cylinder can be studied comparatively simply. For a cylinder with uni- 

form conductivity the calculations were carried out in [a-101. 

In the present paper the stability of a plasma filament in the form 

of a tube situated in a vacuum or an incompressible medium is studied on 

the basis of a hollow incompressible cylinder model. It is assumed that 

in the equilibrium state in the conducting layer there are both (azi- 

muthal and axial) components of the magnetic field. The study of sta- 

bility is carried out on the basis of the linearized equations of 

magnetohydrodynamics by the method of normal oscillations. The limiting 

cases are considered of infinitely large and small conductivity of the 

hollow cylinder. In the first case the dispersion equation is expressed 

in quadratures for long-wave perturbations leading to spiral twisting of 

the cylinder, under the conditions that the longitudinal magnetic field 

is almost uniform. In particular, for a solid conducting cylinder the 
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Criterion of stability turns out to be independent of the distribution 
of longitudinal current. In the case of small conductivity the cbarecter- 
istic oscillations are absent if the density distribution of volume 
current is continuous. They arise only in the presence of discontinuities 
in the distribution of conductivity. 

In Section 1 is formulated the problem for the case of arbitrary de- 
gree of conductivity of the medium. Sections 3 and 3 are devoted to a 
study of stability in the approximation of a perfectly conducting fluid. 
Stability of a poorly conducting cylinder is considered in Section 4. 

1. Formulatioa of the problem. Let us denote the internal and 
external radii (see figure) of the conducting layer 0 by r1 and r2. We 
shall assume that inside the tuba there is a perfect conductor 3 of 
radius al rl , through which flows a current, whilst the outside of the 
region under consideration is enclosed by a perfectly conducting cylinder 
4 of radius uqr2 (the layers i and 2 are nonconducting). 

Suppose that in the equilibrium state the velocity v = 0, whilst the 
distribution of magnetic field has the form 

Here ir, i 
w 

, iz are base vectors in a cylindrical system of coordi- 

nates; g and are arbitrary functions of r (for a medium of finite con- 
ductivity in the region r1 < r < r2 the functions g, h, g’ = dgfdr, h’ = 

dh/dr must be continuous); rO is a certain intermediate radius (in what 

follows we shall generally take rg = r2). In the region r1 < r < r2 the 
conductivity and density of the medium are equal to CJ and p (p is con- 

stant), whilst the pressure 

Let the density and pressure outside the conducting layer be xjp and 

Pj, where j = 1 if r < rl, and j = 2 if r > r2, whilst xj, pi are con- 

stants. 

‘Ihe conductivity VT(r) is connected with the field distribution H(r) 
by the relation 
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$$-E~-i,$+iz hdG (E-iv- 
0 

‘“> + i&,, Ego, E,, = const ) (1.3) 

In the study of stability of a slowly moving cylinder, or in the case 
of a slowly changing magnetic field the electric field i? in Equation 
(1.3) may be a more complicated function of r. 

Suppose that a small perturbation is 

superimposed on the specified equilibrium 
distribution, so that the resultant 
quantities are: H + H*, p + p*, v*, where 
the asterisks denote the perturbations, 
which are functions of time and the co- 
ordinates T, z in the form expIi(ot + 
kz f mqdl. 

We shall assume that m > 0, which can 
be ensured by suitable choice of the 
direction of the z-axis. Moreover the 
sign of the constant HO will depend upon 

the type of oscillation under examination. In view of the fact that only 
the sign of the product kh is important we can still choose k >O, then 
instead of perturbations with negative k we shall need to consider the 
stability for a distribution with a changed sign in front of h. 

Setting V* = ioe in the basic linearized system of equations 
ma~etohydrod~amics 

of 

(1.4) - 4npo*5 =LI - V (4np* + H.H*) + (H*.O) H + (HqV) H* 

II* = rot (5 x H) --&-rot; rot H*, div 5 = 0, divH* = 0 

we obtain 

T t = - VQ + isH* - 2i,gH,* + [i, (rg’ + 2g) -+-irr&‘] H,* 

ltl[* _ i;- g - (i,rg’ + i,r,h’) 

div 5 =0 

Here dashes denote differentiation with respect to r 

Q=j$- (4np* 4 H.H*), . divH* =0 

t 
v2H* + $- i, x rotH* 

1 

(1.5) 

(l.fi) 

(1.7) 
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To determine the boundary conditions let us consider the region out- 
side the conducting layer. tfere the perturbation of the magnetic field 
is 

Hence it follows that 

Here 

In the brace brackets 

are small, and alsa when 

Fram the equation 

we find that 

is shown the expression for Tj when krj, kairj 
a2 tends to infinity. 

On the boundary r = rj the field and pressure must be continuous 

H (rj) + (8~ G + H$arj s P trd -t (Er $i + P*)mTj 

Hence it follows that 

i > 

q(j) 
- P=trj = (Wr*)r=rj = Hrj* ar 

‘lb three other conditions give 
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(1.9) 

Hlj* + hj’Hogrj - $ Hrj* = 0 

Erj = CE:)r=rj etc. ) 

(1 .lO) 

Accordingly, the problem reduces to finding the root R of the deter- 

minant of the system (1.8) to (l.lO), in which are substituted appropriate 

solutions of’Equations (1.5) to (1.7). F or unstable oscillations the real 

part of R must be positive (He R > 0). 

3. The approximation of perfect conductivity. Vhen q = m, 

i.e. in the approximation of perfect conductivity of the medium, it is 

not difficult to obtain from (1.5) to (1.6) the equation 

Ho -- r. d = 6 (Q' + $ Q) + i,i [ pQ’ + m (* T a2) Q] + i,ik (1 - fP - a2)Q 

Here 
(2.1) 

p = 2% 
s2 + i-22 ’ 

x = (I -p2 - 62) (s2 + 522) 

Substitution of (2.1) in Equation (1.7) leads to the equation obtained 

in [.%I 

Q” + (f - $) Q' - p (1 - fi2 - a2) + s - y + ma ‘i2- **)} Q = 0 (2.2) 

liy means of the substitutions 

roQ 
-Hui,= 

XQ 
Qr+!$ Q 

(2.3) 

Equation (2.2) can be reduced to the following forms: 

(2.4) 

@,’ + m2 + karz rz (9 + Q2) 
CDs - 1 - 2m3. a _ 5 = 0 

r (2.5) 

2m3 ma - k2ra 
A” + [Sg& + 7 + r (,$ + /&“) ] A - $‘A’L’,$ A = 0 (2.6) 

The boundary conditions arise from the conditions of continuity of 

total pressure (hydrodynamic plus magnetic) on the surfaces r = Fj. 
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If there are no 
then Formula (1.8) 

discos&i&ties in the field H(r) at the boundaries, 
remains valid, or 

mQi+& 
j 

(2.7) 

To study the stability of a 
sider such a distribution when 

cylinder with surface currents let us con- 
g(r) and h(r) change rapidly in a thin 
. . , 

layer at the surface, so that g’ >> gfr and so on. 

On the assumption that a2 + Q2 is not close to zero, Equation (2.5) 
is easily integrated. It is clear that U(r) cannot be such a rapidly 
varying function of r, that the second term in the left-hand side of 
(2.5) is important, and therefore in the region of the current layer 

@ + rgz = con& (2.8) 

Integrating again the r-component of (2.1) and using (2.8), we find 

that 

E _f = corist (2.9) 

The equations obtained are, of course, in accord with the results of 
the usual method of studying the stability of a filament with surface 
currents [l-2], in whfch the equations of eagnetohydrod~namies are not 
solved in the region of the current layer. but the discontinuity in the 
tangential component of the steady field is allowed for in the boundary 
conditions. The case where zeros of the function s2 + Q2 are present re- 
quires special study (see [TI 1. For example, there remains the difficult 
question as to what eXtent Equations (2.8). (2.9) can be analYticallY 
continued in a region of arbitrary values of t2 + 52’. 

Equations (2.8), (2.9) remain valid even for a conpressible medium, 
when instead of (1.7) we use the equations of continuity and isentropic 
motion. 

3. The approximation of perfect conductivity. Long-wave 
perturbations. Let us consider perturbations m f 0, the wave length of 
which is large in comparison with the radius r2, so that k2rz2 << 1. 

From Formula (2.1) it follows that cz is of order krOgr, and therefore 
to an order of accuracy fk”r’) we shall have* 

* Here we do not consider the case when there are points where s2 f 
R2 = 0 in the interval under consideration. In the neighborhood of 
such a point there may be other important small terms, neglected in 
the basic equations of magneto~ydrodynamics. 
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The system (1.5), (1.61 for the variable R = ~~*~~~~ enables 
obtain (when q = ml 

rJ (SB + W) R” + t (ss + 62’ + Brss’) R’ - 

- ?ns 
C 
$ + 52s - Zrgg’ _t % (sg’ + gs’)] R = 0 

one to 

(34 

Moreover 

Q =_v+m R’ ; 2% 
ms 

m R, H,* = f R, I!&,* = -+Ii’- g’R (3.2) 

Two examples, for which the solution of (3.1) can be expressed in 
terms of known functions, were studied in [sI. Here we consider the sta- 
bility of configurations with approximately uniform longitudinal magnetic 
field, moreover we restrict ourselves to consideration of the most 
troublesome perturbations, leading to spiral twisting of the cylinder. 

In particular, we shall assume that m = 1, whilst Rz’ is of smaller 
order than kHo. We shall assume also that the distribution of the field 
H(r) in the steady state is continuous. Taking account of the fact that 

s’ = g’, from (3.1) we obtain 

Substitution of (3.3) in (2.7) leads to the dispersion equation 

rt 

W,S,S, s dr 

rs (9 + q +-$srya=o 
r1 

sj = Sja f Q* - 2Sjgj - (Sja + Q’Xj) $2 
I 

For a solid cylinder rI = 0 and S, = 0. This means that, setting 

r0 = r2, we shall have g, = 1, s2 = 1 f kroh 

SZe 1 +x2 y&+Q 
( 

ag8+ 1 ( 1 
‘aa% -- 

u2* - i 1 

(34 

(3.5) 

The frequency of the oscillations does not depend upon the distribu- 
tion of the field /iq and HZ with respect to the section of the cylinder. 
The only important quantity is the Longitudinal magnetic field (if the 
latter is sufficiently great, so that kr,,h is of order unity). The the 
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values of Q* > 0 there corresponds the range of instability 

For the case g(r) E 1, h = const, x2 = 0, this result can be obtained 
from the Formulas of /3]. 

For a solid cylinder of uniform density, the internal part of which 
0 < I" < rf is nonconducting, in the absence of an internal conductor we 

have 

xi= 1, a, = 0, g, = 0 

Since S, = 0, the dispersion equation f3.4) again reduces to Formula 

(3,51. 

Let us consider again the stahifity of a tubular cylinder surrounded 
by a vacuum in the ease when the longitudinal current is uniform across 
the section, when {with r. = rS) we have 

xr=xs=Ot g=%, S=3+kr&~coIIst, al==& a,=cxT 

'Ihe conditions of equilibrium are satisfied if firrp <;f HzzS whilst 
H,(r) is a slowly decreasing function of fr). From Equation (3.4) we ob* 
tain 

(3.6) 

One of the solutions is unstable in the range 

whilst the other is unstable in the rmge 

In accordance with the increased number of boundaries we obtain two 
ranges of instability + 

4. The approxisatian ef peer conductivity, In the ease of 
poor conductivity of the medium, when q <c 1, instead of Equation fl.6) 
we have 

vPH*+_$ i, xrot H* = 0 

Fm the chants of H* we obtG.n the system 
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(44 

&H,” 
krH,’ = i -ar - mH,* (4.3) 

Let us consider the stability with respect to long-wave perturbations 

(k2r2 << 1). Suppose again that IR # 0 and h’ is of order k. 

From the system (4.2) we find that 

rBF* = - i (D,P -Df>,r”), rf.f** = D,rm + l&r--m 

L) n = const 

We then obtain 

(4.4) 

V8Q = F I(m - 1) D,mm - (m + 1) &r-m] 

+ B,r” + l)*rm (4.5) 

@JfO& 
-= 

r0 
2m (m - 1) D,r-_rS gr2m-%C + D, (s - 2mg) pm + 

b 
ve 

+2m (m -f- 1) lJ2rrn\ gr-++-%+r - D, (s - 2mg) rm - mL),rm + mD,r-m 

r1 

S~stit~~ing the sorutions in the conditions (1.81, (1.9) leads to a 
system, the vanishing of whose determinant gives the dispersion equation. 
lIie conditions (1.10) serve here for determining the arbitrary constants 
D, and D, arising in the following approximation with regard to the small 
parameter k2r2 in the expression for NE*, (If H * were of order fir*/kr,, 
then the dispersion equation would follow from the boundary conditions 
(1.10). It has, however, no solution.) 

Let us write out the dispersion equation for the case of a solid 
filament of uniform density, in the internal portion of which fr < rl) 
the field H = 0 and CT = 0. Then x1 = 1, T; = 1, g, = 0. When xz = 0, 

T2 = - 1 we’shall have 

2524 - {r,g,’ r%, + 



1334 Iu. V. Vandakurov 

- frg,' fr2g2' + 2g2) ($1 (d-m + $2 - mg,) + LL I(mg2 - 
r2 

- s2) w-t?l + s2 + 81) + @m + s2) (Ln + s2 - mg2)ll = 0 (4.7) 

where 

d, = 2n (n + 1) r22n :’ gr-zn-ldr, f n= fn 
I‘ 

fn the absence of discontinuities in the density of current at the 
internal boundary g, ’ = 0 and instead of (-1.7) we obtain 

Q2 =; - (rag, + 2g,) (LYQ7h, + 2m (m - I) r2-2*arz gram-r&} 
s 

(4.8) 

Tl 

Hence it is clear how important is the assumption concerninp continu- 
ity of the first derivatives of the functions ,1,(r) and NZ(r). In the 
presence of discontinuities in the distribution of current density there 
arise supplementary characteristic oscillations, which can be unstable. 

The question of the absence of characteristic oscillations for a 

cylinder with g, h, g’ and h’ continuous everywhere can be considered in 
a more general form. 

Since the terms in Er drop out of the relations (1.9), (1. lo), the 

dispersion equation is given by the vanishing of the determinant of the 
system (1.91, (1. lo), in which the solutions of Equations (4.21, (4.3) 
have been substituted. From physical considerations it is obvious that 
the solution is R* = 0. Otherwise from condition (1.8) for an arbitrary 
frequency of oscillation we could determine the two remaining unknown 
constants occurring in the solution of the equation for Q, and there 
would exist oscillations for any specified frequency. In view of the fact 

that CT{ rj) = 0, from (4. 1) we obtain the following supplementary coudi- 
tions when E( rj’ # 0 

f arH,* im -- 
ar -7 

H,* = 0, =o 
r r=rj 

The solution is A* = 0. 

when H* = 0 from Equation (1.5) taken with (1.8) we obtain Q = 0, 
r 
sr = 0. In this case characteristic oscillations of a thin cylinder do 
not occur. 

The equilibrium configuration with a discontinuity in the distribu- 
tion of current density can be obtained by a passage to the limit from 
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the continuous distribution. Then characteristic oscillations will be 
absent for any distribution of current density, which contradicts the 
conclusions derived above. It is necessary, however. to notice that for 
a sufficiently large value of the gradient of the field the magnetohydro- 
dynamic equations become inapplicable. so that the proposed limiting 
transition is impermissible. In the presence of forces of surface tension 
a configuration with a discontinuity of conductivity at the boundary 
seems to be more realistic. 
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